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The plant-derived monoterpenoids (�)-rosiridol and (�)-rosiridin can be assembled in an enantioselec-
tive manner via DIP–Cl reduction of a ketone precursor obtained by BCl3-mediated C–C coupling of prenyl
stannane and an a,b-unsaturated C5 aldehyde. On the basis of Mosher analyses, the absolute stereochem-
istry 4S was assigned to (�)-rosiridol; this was confirmed by X-ray structure analysis of pentaacetylrosir-
idin. Glucosylation of (4S)-4-acetoxygeraniol proceeds under Koenigs–Knorr conditions in diethyl ether.
(�)-Rosiridin was synthesized for the first time.

� 2008 Elsevier Ltd. All rights reserved.
Exploring the synthesis of cladiellane diterpenoids,1 we became
interested in the hydroxylated monoterpenoid (�)-rosiridol [(�)-1,
(�)-4-hydroxygeraniol]. (�)-Rosiridol [(�)-1] has been isolated as
a natural product from the rhizome of the medicinal plant Rhodiola
rosea2–4 (Crassulaceae, roseroot), from the leaves of Cunila spicata
(Lamiaceae),5 and was detected in petals of the rose Rosa
damascena.6
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Glycosylated derivatives of (�)-rosiridol [(�)-1] include the ma-
jor component (�)-rosiridin [(�)-2] from Rh. rosea2,7 and rhodiolo-
sides B and C from Rhodiola sachalinensis.8,9 A rosiridyl side chain
occurs in the tyramine derivative acidissiminol from the wood ap-
ple tree Limonia acidissima10 and in a 5-methylcoumarin from
Mutisia orbignyana (Asteraceae).11 The carbon skeleton of the mar-
ine triterpenoid glycoside xestovanin A contains a 4-hydroxygera-
nyl partial structure.12

There are contradicting reports on the absolute stereochemistry
of (�)-rosiridol. While Kadota et al.7 and Koike et al.8 concluded
that (�)-rosiridol [(�)-1] should have 4R configuration, Hong
et al.13 and Yoshikawa et al.9 derived 4S configuration. An
ll rights reserved.
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independent synthesis of (�)-rosiridol and a first synthesis of
(�)-rosiridin [(�)-2] might shed some light on that issue.

Hong et al. published the only total synthesis of (�)-1 by
coupling prenylzinc to a C5 aldehyde in the presence of HMPA
and a norbornene-derived chiral auxiliary under precisely defined
conditions strongly dependent on the reaction time.13

Synthesis of rac-rosiridol. We first synthesized rac-rosiridol
(rac-1) to obtain NMR data of both Mosher esters. Aldehyde 5
was prepared from prenol (3) in three steps (Scheme 1).14 The con-
comitantly formed allylic alcohol 4 was oxidized to 5 with IBX.
Regarding the regioselective SN2 addition of the prenyl nucleophile
to a carbonyl group,15 a procedure first employed by Danishefsky
and co-workers worked best.16 BCl3 was rapidly added to a cooled
solution of aldehyde 5 and stannane 6 leading to the desired
alcohol rac-7 via transmetalation of the prenyl moiety from tin
to boron (Scheme 1). We observed formation of the regioisomeric
SN20 product when the stannane 6 was prepared from prenyl bro-
mide, whereas use of prenyl chloride led to complete SN2
regioselectivity.17

Removal of tin containing impurities was possible by column
filtration on KF–silica (1:9) leaving the OTPS group intact.18 Depro-
tection under standard conditions afforded rac-rosiridol (rac-1) in
80% yield.19

Diastereomeric (R)-Mosher esters 8 and 9 were synthesized
from rac-7 (Scheme 1, Fig. 1) employing (S)-MTPA–Cl20 and were
analyzed by 1H NMR spectroscopy (8: (R,4R), 9: (R,4S)).21 The
(R,R)-diastereomer 8 must exhibit the same 1H NMR chemical
shifts as the (S,S)-compound, which are to be compared with that
of (S,R)-diastereomer 9. We also desilylated 8 and 9 affording the
4-O-MTPA esters of rac-1, which exhibited 1H NMR chemical shifts
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Scheme 1. Synthesis and Mosher analysis of rac-rosiridol (rac-1). 1H NMR chemical
shifts were obtained in CDCl3.

Figure 1. Structure of pentaacetylrosiridol [(4S)-14] in the crystal, obtained by
recrystallization from EtOH.29
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Scheme 2. Synthesis of (�)-rosiridol [(�)-1] and (�)-rosiridin [(�)-2].
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corresponding well to those of 8 and 9. The bulky TPS group does
not appear to substantially change the average conformation of
the Mosher esters.

Enantioselective synthesis of (�)-rosiridol. Alcohol rac-7 was oxi-
dized with IBX affording ketone 10 (Scheme 2). For the reduction of
10 we employed (�)-DIP–Cl (11)20 and obtained alcohol (4S)-7. Re-
moval of the TPS group afforded (�)-rosiridol [(�)-1] with negative
optical rotation (½a�20

D �7.2, c 0.36, acetone), proving its identity
with the natural product. The enantioselectivity of ketone reduc-
tions with (�)-DIP–Cl predicts the formation of the (S)-enantio-
mer.22 The absolute stereochemistry of (4S)-7 was confirmed by
1H NMR spectroscopy of the (R)-Mosher ester 9 and comparison
with the data obtained on derivatization of rac-7. The enantiomeric
ratio of (4S)-7 and (4R)-7 obtained by the (�)-DIP-Cl reduction was
about 97:3 (1H NMR analysis). We additionally confirmed this by
using (R)-MTPA–Cl.20

Koike et al. obtained rosiridyl 1-O-pivaloate by enzymatic
hydrolysis of the diglycoside rhodioloside B, followed by esterifica-
tion.8 The 1H NMR chemical shift differences reported for the
Mosher esters of rosiridyl 1-O-pivaloate almost exactly mirror
our data, but with opposite sign. The 1H NMR chemical shift differ-
ences observed for the 4,60-bis-Mosher esters of (�)-rosiridin [(�)-
2] obtained by Kadota et al. are quite small and difficult to compare
with our values.7 The Kadota and Koike groups both conclude that
(�)-rosiridol [(�)-1] has R configuration. Contrastingly, Hong et al.
base their opposite 4S assignment for (�)-rosiridol [(�)-1] not only
on the Mosher esters of the TBS-protected analog of [(�)-1], but
also on the conversion of the compound to the pheromone (�)-
eldanolide.13 The absolute stereochemistry of (�)-eldanolide had
been proven earlier by total synthesis.23 Our own Mosher analysis,
in accordance with the expected stereoselectivity of the (�)-DIP–Cl
reduction, lets us draw the same conclusion as the Hong and Yos-
hikawa groups proposing 4S configuration for (�)-rosiridol [(�)-1].

Glucosylation. (4S)-4-O-Acetylrosiridol24 was obtained from
(4S)-7 in the presence of DMAP, followed by desilylation of (4S)-
12 (Scheme 2).25 Koenigs–Knorr glucosylation employing tetra-
acetylated a-glucopyranosyl bromide (13) in the presence of
Ag2CO3 in Et2O26 provided the peracetylated compound (4S)-14
in 26% isolated yield after chromatography with 15% recovered
starting material.27 Glucosylations carried out in DMF as described,
for example, for xylosylations by Satgé et al.28 were unsatisfactory
in our hands. In a prior model reaction, glucosylation of geraniol
provided the b-glucoside in an isolated yield of 34% after chroma-
tography with 20% recovered starting material. These non-opti-
mized yields are within the range of expectation for
glucosylations of geraniol derivatives. We were able to determine
the stereochemical outcome of the (�)-DIP–Cl reduction indepen-
dently by X-ray analysis of crystalline pentaacetylrosiridin [(4S)-
14, Fig. 1]; the absolute configuration was determined on the basis
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of anomalous scattering by oxygen.29 Saponification with NaOMe/
MeOH liberated (�)-(4S)-rosiridin (96%).

The maximum deviation of 13C NMR chemical shifts (methanol-
d4) of (�)-(4S)-rosiridin, when compared with the data reported by
Kadota7 and, recently, by Yoshikawa,9 was 0.9 and 0.2, respec-
tively. In a control experiment we synthesized diastereomeric
(�)-(4R)-rosiridin. Alcohol (4R)-7 was obtained by reduction of
10 with (+)-DIP–Cl, followed by acetylation, glucosylation (30 �C,
44%), and saponification. 4S- and 4R-rosiridins exhibit very similar
13C NMR chemical shifts, with the largest difference of 0.2 ppm ob-
served for C-30 (methanol-d4). Optical activities were also compa-
rable (½a�26

D �33.4 (4S), c 0.9 (good agreement with Kurkin2 and
Yoshikawa9) and �22.5 (4R), c 1.6, acetone, respectively). For the
diastereomeric pentaacetylrosiridins (4S)-14 and (4R)-14, how-
ever, the difference in optical rotation was more significant (½a�28

D

�24.5 (4S), c 1.0 and �4.9 (4R), c 1.0, acetone, respectively). Kurkin
et al. had reported ½a�20

D �28.4 (c 1.0, acetone) for (4S)-14.2 This
leads us to conclude that the natural product (�)-rosiridin has 4S
configuration.
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